Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
2.
Front Med (Lausanne) ; 11: 1338947, 2024.
Article in English | MEDLINE | ID: mdl-38633306

ABSTRACT

Background: Interstitial lung disease (ILD) is a common complication of idiopathic inflammatory myopathy (IIM), which is one of the connective tissue diseases (CTD). It can lead to poor prognosis and increased mortality. However, the distribution and role of the lower respiratory tract (LRT) microbiome in patients with IIM-ILD remains unclear. This study aimed to investigate the microbial diversity and community differences in bronchoalveolar lavage fluid (BALF) in patients with IIM-ILD. Methods: From 28 June 2021 to 26 December 2023, 51 individual BALF samples were enrolled, consisting of 20 patients with IIM-ILD, 16 patients with other CTD-ILD (including 8 patients with SLE and 8 with RA) and 15 patients with CAP. The structure and function of microbiota in BALF were identified by metagenomic next-generation sequencing (mNGS). Results: The community evenness of LRT microbiota within the IIM-ILD group was marginally lower compared to the other CTD-ILD and CAP groups. Nonetheless, there were no noticeable differences. The species community structure was similar among the three groups, based on the Bray-Curtis distance between the samples. At the level of genus, the IIM-ILD group displayed a considerably higher abundance of Pseudomonas and Corynebacterium in comparison to the CAP group (p < 0.01, p < 0.05). At the species level, we found that the relative abundance of Pseudomonas aeruginosa increased significantly in the IIM-ILD group compared to the CAP group (p < 0.05). Additionally, the relative abundance of Prevotella pallens was significantly higher in other CTD-ILD groups compared to that in the IIM-ILD group (p < 0.05). Of all the clinical indicators examined in the correlation analysis, ferritin level demonstrated the strongest association with LRT flora, followed by Serum interleukin-6 level (p < 0.05). Conclusion: Our research has identified particular LRT microorganisms that were found to be altered in the IIM-ILD group and were significantly associated with immune function and inflammatory markers in patients. The lower respiratory tract microbiota has potential in the diagnosis and treatment of IIM-ILD.

3.
Microorganisms ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543636

ABSTRACT

Vermiculite is a clay mineral with unique physical properties that plays a significant role in plant cultivation, soil remediation, and solid waste management. In this research, we first explored how vermiculite-to-microbe interactions evolved during sludge-waste mushroom residue co-composting. Vermiculite's addition had a substantial impact on the microbial α and ß diversities, significantly changed the microbial community pattern, and strengthened the composting nutrient circulation through the formation of more specialist and generalist species. The microbial community characteristics exhibited common co-networks for resisting composting environment stresses. Vermiculite contributed to enhancing the keystone taxa Proteobacteria and Actinobacteriota and caused the ecological function network to diversify in the warming and maturation phases, with more complexity and tightness in the thermophilic phase (with super-generalist species existing). The enhanced microbial interactions induced by vermiculite possessed a greater capacity to facilitate the metabolisms of carbohydrates and amino acids and cellulolysis, thereby promoting composting humification, and nitrogen retention in the final compost and composting maturity. These findings are helpful for us to understand the biological process mechanisms of the effect of vermiculite additives on composting and contribute to the establishment of a theoretical framework for enhancing the microbial interactions in composting systems by adding vermiculite in practical applications.

4.
BMC Oral Health ; 24(1): 213, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341576

ABSTRACT

BACKGROUND: During dental procedures, critical parameters, such as cooling condition, speed of the rotary dental turbine (handpiece), and distance and angle from pollution sources, were evaluated for transmission risk of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), simulated by spiking in a plasmid encoding a modified viral spike protein, HexaPro (S6P), in droplets and aerosols. METHODS: To simulate routine operation in dental clinics, dental procedures were conducted on a dental manikin within a digital dental unit, incorporating different dental handpiece speeds and cooling conditions. The tooth model was immersed in Coomassie brilliant blue dye and was pre-coated with 100 µL water spiked-in with S6P-encoding plasmid. Furthermore, the manikin was surrounded by filter papers and Petri dishes positioned at different distances and angles. Subsequently, the filter papers and Petri dishes were collected to evaluate the aerosol splash points and the viral load of S6P-encoding plasmid in aerosols and splatters generated during the dental procedure. RESULTS: Aerosol splashing generated a localized pollution area extended up to 60 cm, with heightened contamination risks concentrated within a 30 cm radius. Significant differences in aerosol splash points and viral load by different turbine handpiece speeds under any cooling condition (P < 0.05) were detected. The highest level of aerosol splash points and viral load were observed when the handpiece speed was set at 40,000 rpm. Conversely, the lowest level of aerosol splash point and viral load were found at a handpiece speed of 10,000 rpm. Moreover, the aerosol splash points with higher viral load were more prominent in the positions of the operator and assistant compared to other positions. Additionally, the position of the operator exhibited the highest viral load among all positions. CONCLUSIONS: To minimize the spread of aerosol and virus in clinics, dentists are supposed to adopt the minimal viable speed of a dental handpiece with limited cooling water during dental procedures. In addition, comprehensive personal protective equipment is necessary for both dental providers and dental assistants.


Subject(s)
Respiratory Aerosols and Droplets , SARS-CoV-2 , Humans , Models, Dental , Aerosols , Water
5.
Bioresour Technol ; 393: 130133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043689

ABSTRACT

Heavy metal-resistant bacteria secrete extracellular proteins (e-PNs). However, the role of e-PNs in heavy metal resistance remains elusive. Here Fourier Transform Infrared Spectroscopy implied that N-H, C = O and NH2-R played a crucial role in the adsorption and resistance of Ni2+ in the model organism Cuprividus pauculus 1490 (C. pauculus). Proteinase K treatment reduced Ni2+ resistance of C. pauculus underlining the essential role of e-PNs. Further three-dimension excitation-emission matrix fluorescence spectroscopy analysis demonstrated that tryptophan proteins as part of the e-PNs increased significantly with Ni2+ treatment. Proteomic and quantitative real-time polymerase chain reaction data indicated that major changes were induced in the metabolism of C. pauculus in response to Ni2+. Among those lipopolysaccharide biosynthesis, general secretion pathways, Ni2+-affiliated transporters and multidrug efflux play an essential role in Ni2+ resistance. Altogether the results provide a conceptual model for comprehending how e-PNs contribute to bacterial resistance and adsorption of Ni2+.


Subject(s)
Cupriavidus , Metals, Heavy , Nickel , Proteomics , Metals, Heavy/metabolism , Cupriavidus/metabolism
6.
Res Sq ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986867

ABSTRACT

The avian influenza A virus H7N9 causes severe human infections with more than 30% fatality despite the use of neuraminidase inhibitors. Currently there is no H7N9-specific prevention or treatment for humans. From a 2013 H7N9 convalescent case occurred in Hong Kong, we isolated four H7 hemagglutinin (HA)-reactive monoclonal antibodies (mAbs) by single B cell cloning, with three mAbs directed to the HA globular head domain (HA1) and one to the HA stem region (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralized H7N9 and protected mice from a lethal H7N9/AH1 challenge. Cryo-EM structures revealed that H7.HK1 and H7.HK2 bind to a ß14-centered surface partially overlapping with the antigenic site D of HA1 and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on the adjacent protomer, thus affectively blocking viral entry. The more potent mAb H7.HK2 retained full HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, which is consistent with structural data showing that the antigenic mutations of 2016-2017 from the 2013 H7N9 only occurred at the periphery of the mAb epitope. The HA2-directed mAb H7.HK4 lacked neutralizing activity but protected mice from the lethal H7N9/AH1 challenge when engineered to mouse IgG2a enabling Fc effector function in mice. Used in combination with H7.HK2 at a suboptimal dose, H7.HK4 augmented mouse protection. Our data demonstrated an allosteric mechanism of mAb neutralization and augmented protection against H7N9 when a HA1-directed neutralizing mAb and a HA2-directed non-neutralizing mAb were combined.

7.
Emerg Microbes Infect ; 12(2): 2261559, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732336

ABSTRACT

Limited follow-up data is available on the recovery of Omicron COVID-19 patients after acute illness. It is also critical to understand persistence of neutralizing antibody (NAb) and of T-cell mediated immunity and the role of hybrid immunity in preventing SARS-CoV-2 reinfection. This prospective cohort study included Omicron COVID-19 individuals from April to June 2022 in Shanghai, China, during a large epidemic caused by the Omicron BA.2 variant. A total of 8945 patients from three medical centres were included in the follow up programme from November 2022 to February 2023. Of 6412 individuals enrolled for the long COVID analysis, 605 (9.4%) individuals experienced at least one sequelae, mainly had fatigue and mental symptoms specific to Omicron BA.2 infection compared with other common respiratory tract infections. During the second-visit, 548 (12.1%) cases of Omicron reinfection were identified. Hybrid immunity with full and booster vaccination had reduced risk of SARS-CoV-2 reinfection by 0.29-fold (95% CI: 0.63-0.81) and 0.23-fold (95% CI: 0.68-0.87), respectively. For 469 participants willing to the hospital during the first visit, those who received full (72 [IQR, 36-156]) or booster (64 [IQR, 28-132]) vaccination had significantly higher neutralizing antibody titers than those with incomplete vaccination (36 [IQR, 16-79]). Moreover, non-reinfection cases had higher neutralizing antibody titers (64 [IQR, 28-152]) compared to reinfection cases (32 [IQR, 20-69]).


Subject(s)
COVID-19 , Humans , Follow-Up Studies , SARS-CoV-2 , China/epidemiology , Post-Acute COVID-19 Syndrome , Prospective Studies , Reinfection/epidemiology , Antibodies, Neutralizing , Antibodies, Viral
8.
RSC Adv ; 13(38): 26509-26515, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37671349

ABSTRACT

Recently, molybdenum disulfide (MoS2) has been extensively investigated as a promising pseudocapacitor electrode material. However, MoS2 usually exhibits inferior rate capability and cyclability, which restrain its practical application in energy storage. In this work, MoS2 nanoflowers regulated by Li2SO4 (L-MoS2) are successfully fabricated via intercalating solvated Li ions. Via appropriate intercalation of Li2SO4, MoS2 nanosheets could self-assemble to form L-MoS2 nanoflowers with an interlayer spacing of 0.65 nm. Due to the large specific surface area (23.7 m2 g-1) and high 1T phase content (77.5%), L-MoS2 as supercapacitor electrode delivers a maximum specific capacitance of 356.7 F g-1 at 1 A g-1 and maintains 49.8% of capacitance retention at 20 A g-1. Moreover, the assembled L-MoS2 symmetric supercapacitor (SSC) device displays an energy density of 6.5 W h kg-1 and 79.6% of capacitance retention after 3000 cycles.

9.
Folia Neuropathol ; 61(2): 196-208, 2023.
Article in English | MEDLINE | ID: mdl-37587894

ABSTRACT

Alzheimer's disease (AD) is a chronic, neurodegenerative disorder that affects the central nervous system and is found predominantly in elderly populations. As amyloid b protein (Ab) is one of the key players responsible for the pathogenesis of AD, we sought to investigate the protective effects of fisetin in an Ab1-42-induced rat model of AD. In this model, the protective effects of fisetin on learning and memory impairment induced by Ab1-42 were determined via the Morris water maze and passive avoidance test. Furthermore, the antioxidant activity, anti-inflammation, and apoptosis effect of fisetin were investigated using biochemical and immunohistochemical methods. The results showed that intragastric (i.g.) administration of fisetin (100, 50, and 25 mg/kg) improved previous learning and memory impairments in Ab1-42-treated rats. Hippocampal tissue from these fisetin-treated rats revealed that the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) were markedly enhanced, and that the levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were significantly reduced. Meanwhile, fisetin also significantly attenuated Ab1-42-induced cholinergic dysfunction such as elevated the activity of choline acetyltransferase (ChAT) and reduced the activity of acetylcholine esterase (AChE). In addition, hippocampal tissue obtained from fisetin-treated rats revealed a reversal of Ab1-42-induced effects on apoptotic pathway protein (caspase-3) expression and inflammatory response of glial fibrillary acidic protein (GFAP). This indicated that the amount of degenerating hippocampal neurons with apoptotic features was dramatically reduced after treatment with fisetin. Collectively, these findings suggest that fisetin has potential as a treatment agent for Alzheimer's disease and that its effects occur through several mechanisms, including inhibition of oxidative stress, adjustments to previous cholinergic dysfunction, anti-inflammatory actions, and decreased apoptotic activity.


Subject(s)
Alzheimer Disease , Animals , Rats , Alzheimer Disease/drug therapy , Central Nervous System , Flavonols/pharmacology , Amyloidogenic Proteins
10.
Clin Respir J ; 17(10): 998-1005, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584411

ABSTRACT

BACKGROUND: Transbronchial lung cryobiopsy (TBLB) is routinely used to diagnose the interstitial lung disease (ILD). These results are consistent with those of surgical lung biopsy. Fluoroscopy is also used to confirm the final position of the cryoprobe; however, it can increase radiation exposure for both patients and medical care personnel. Probe-based confocal laser endomicroscopy (pCLE) is a novel optical imaging technique that allows real-time imaging at the cellular level in vivo. pCLE technology can also be used to identify malignancy, acute rejection in lung transplantation, amiodarone lung, and pulmonary alveolar proteinosis and visualize elastin fibres in the alveolar compartment. OBJECTIVES: The aim of this study is to investigate the ability of pCLE to distinguish fibrotic pulmonary issues from normal lung disease and the safety and feasibility of CLE-guided bronchoscopy and transbronchial lung cryobiopsy (TBLC) in patients with interstitial lung disease (ILD). METHODS: pCLE images from 17 ILD patients were obtained during TBLB. These images were then compared with histology results to assess the correspondence rate. RESULTS: pCLE imaging of the alveolar structures was performed. Key characteristics were visible, which could potentially influence the diagnostic rate (fibrotic areas) and the complication rate (blood vessel and pleura). CONCLUSION: pCLE may reduce complications and increase the diagnostic yield. It is a potential guidance tool for cryobiopsy in the patients with ILD without fluoroscopy.


Subject(s)
Lung Diseases, Interstitial , Lung Transplantation , Humans , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/etiology , Lung/diagnostic imaging , Lung/pathology , Bronchoscopy/adverse effects , Bronchoscopy/methods , Biopsy/methods , Lasers
11.
Article in English | MEDLINE | ID: mdl-36981886

ABSTRACT

Since the impoundment of the Three Gorges Reservoir area in 2003, the potential risks of geological disasters in the reservoir area have increased significantly, among which the hidden dangers of landslides are particularly prominent. To reduce casualties and damage, efficient and precise landslide susceptibility evaluation methods are important. Multiple ensemble models have been used to evaluate the susceptibility of the upper part of Badong County to landslides. In this study, EasyEnsemble technology was used to solve the imbalance between landslide and nonlandslide sample data. The extracted evaluation factors were input into three bagging, boosting, and stacking ensemble models for training, and landslide susceptibility mapping (LSM) was drawn. According to the importance analysis, the important factors affecting the occurrence of landslides are altitude, terrain surface texture (TST), distance to residences, distance to rivers and land use. The influences of different grid sizes on the susceptibility results were compared, and a larger grid was found to lead to the overfitting of the prediction results. Therefore, a 30 m grid was selected as the evaluation unit. The accuracy, area under the curve (AUC), recall rate, test set precision, and kappa coefficient of a multi-grained cascade forest (gcForest) model with the stacking method were 0.958, 0.991, 0.965, 0.946, and 0.91, respectively, which a significantly better than the values produced by the other models.


Subject(s)
Disasters , Landslides , Geographic Information Systems , China , Rivers
12.
Adv Exp Med Biol ; 1407: 29-44, 2023.
Article in English | MEDLINE | ID: mdl-36920690

ABSTRACT

Pseudotyped viruses are more and more widely used in virus research and the evaluation of antiviral products because of their high safety, simple operation, high accessibility, ease in achieving standardization, and high throughput. The development of measures based on pseudotyped virus is closely related to the characteristics of viruses, and it is also necessary to follow the principles of assay development. Only in the process of method development, where the key parameters that affect the results are systematically optimized and the preliminary established method is fully validated, can the accuracy, reliability, and repeatability of the test results be ensured. Only the method established on this basis can be transferred to different laboratories and make the results of different laboratories comparable. This paper summarizes the specific aspects and general principles in the development of assays based on pseudotyped virus, which is of reference value for the development of similar methods.


Subject(s)
Antiviral Agents , Viral Pseudotyping , Reproducibility of Results , Reference Values
13.
Adv Exp Med Biol ; 1407: 85-103, 2023.
Article in English | MEDLINE | ID: mdl-36920693

ABSTRACT

Papillomavirus is difficult to culture in vitro, which limits its related research. The development of pseudotyped virus technology provides a valuable research tool for virus infectivity research, vaccine evaluation, infection inhibitor evaluation, and so on. Depending on the application fields, different measures have been developed to generate various kinds of pseudotyped papillomavirus. L1-based and L2-based HPV vaccines should be evaluated using different pseudotyped virus system. Pseudotyped papillomavirus animal models need high-titer pseudotyped virus and unique handling procedure to generate robust results. This paper reviewed the development, optimization, standardization, and application of various pseudotyped papillomavirus methods.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Animals , Capsid Proteins/genetics , Oncogene Proteins, Viral/genetics , Viral Pseudotyping , Papillomavirus Vaccines/genetics , Papillomavirus Vaccines/therapeutic use , Papillomavirus Infections/prevention & control , Antibodies, Viral , Papillomaviridae/genetics
14.
Clin Respir J ; 17(3): 129-138, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710403

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic airway non-specific inflammatory disease characterised by airway obstruction and alveolar destruction. In recent years, due to the extensive use of antibiotics, glucocorticoids, immunosuppressants and other drugs, pulmonary fungal infection in patients with AECOPD, especially aspergillus infection, has gradually increased. The forms of aspergillus infection present in COPD patients include sensitisation, chronic pulmonary aspergillosis (CPA) and invasive pulmonary aspergillosis (IPA). This review will summarise diagnostic and treatment of aspergillus in COPD patients.


Subject(s)
Aspergillosis , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Pulmonary Disease, Chronic Obstructive , Humans , Invasive Pulmonary Aspergillosis/microbiology , Pulmonary Aspergillosis/diagnosis , Chronic Disease
15.
Water Res ; 231: 119655, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36706471

ABSTRACT

Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.


Subject(s)
Bioelectric Energy Sources , Mercury , Wastewater , Denitrification , Lead , Electrodes , Nitrogen
16.
J Med Virol ; 95(1): e28134, 2023 01.
Article in English | MEDLINE | ID: mdl-36086941

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with autoimmune features and autoantibody production in a small subset of the population. Pre-existing neutralizing antitype I interferons (IFNs) autoantibodies are related to the severity of COVID-19. Plasma levels of IgG and IgM against 12 viral antigens and 103 self-antigens were evaluated using an antibody protein array in patients with severe/critical or mild/moderate COVID-19 disease and uninfected controls. Patients exhibited increased IgGs against Severe acute respiratory syndrome coronavirus-2 proteins compared to controls, but no difference was observed in the two patient groups. 78% autoreactive IgGs and 93% autoreactive IgMs were increased in patients versus controls. There was no difference in the plasma levels of anti-type I IFN autoantibodies or neutralizing anti-type I IFN activity of plasma samples from the two patient groups. Increased anti-type I IFN IgGs were correlated with higher lymphocyte accounts, suggesting a role of nonpathogenic autoantibodies. Notably, among the 115 antibodies tested, only plasma levels of IgGs against human coronavirus (HCOV)-229E and HCOV-NL63 spike proteins were associated with mild disease outcome. COVID-19 was associated with a bystander polyclonal autoreactive B cell activation, but none of the autoantibody levels were linked to disease severity. Long-term humoral immunity against HCOV-22E and HCOV-NL63 spike protein was associated with mild disease outcome. Understanding the mechanism of life-threatening COVID-19 is critical to reducing mortality and morbidity.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Interferon Type I , Humans , SARS-CoV-2 , Autoantibodies , Patient Acuity , Spike Glycoprotein, Coronavirus , Antibodies, Viral
17.
Front Bioinform ; 2: 813960, 2022.
Article in English | MEDLINE | ID: mdl-36304306

ABSTRACT

Backgrounds: Lung cancer is the leading cause of cancer related death worldwide. Current treatment strategies primarily involve surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, determined by TNM stages, histologic types, and genetic profiles. Plenty of studies have been trying to identify robust prognostic gene expression signatures. Even for high performance signatures, they usually have few shared genes. This is not totally unexpected, since a prognostic signature is associated with patient survival and may contain no upstream regulators. Identification of master regulators driving disease progression is a vital step to understand underlying molecular mechanisms and develop new treatments. Methods: In this study, we have utilized a robust workflow to identify potential master regulators that drive poor prognosis in patients with lung adenocarcinoma. This workflow takes gene expression signatures that are associated with poor survival of early-stage lung adenocarcinoma, EGFR-TKI resistance, and responses to immune checkpoint inhibitors, respectively, and identifies recurrent master regulators from seven public gene expression datasets by a regulatory network-based approach. Results: We have found that majority of the master regulators driving poor prognosis in early stage LUAD are cell-cycle related according to Gene Ontology annotation. However, they were demonstrated experimentally to promote a spectrum of processes such as tumor cell proliferation, invasion, metastasis, and drug resistance. Master regulators predicted from EGFR-TKI resistance signature and the EMT pathway signature are largely shared, which suggests that EMT pathway functions as a hub and interact with other pathways such as hypoxia, angiogenesis, TNF-α signaling, inflammation, TNF-ß signaling, Wnt, and Notch signaling pathways. Master regulators that repress immunotherapy are enriched with MYC targets, E2F targets, oxidative phosphorylation, and mTOR signaling. Conclusion: Our study uncovered possible mechanisms underlying recurrence, resistance to targeted therapy, and immunotherapy. The predicted master regulators may serve as potential therapeutic targets in patients with lung adenocarcinoma.

18.
Bioresour Technol ; 363: 127923, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096323

ABSTRACT

The objective of this work was to evaluate the fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 (LD3) inoculant. Inoculation reduced the content of total organic carbon, moisture content, nitrate nitrogen, and nitrite nitrogen. The LD3 inoculant was able to drive the changes in the assembly of the fungal community. In particular, inoculation with LD3 not only increased the relative abundance of Ascomycota and Trichocomaceae_unclassified for lignocellulose degradation at the mesophilic and cooling stages but also reduced the relative abundances of the opportunistic human pathogen Candida. Saprotroph was the predominant fungal trophic mode in composting, and inoculation with LD3 has a better inactivation effect on animal and plant pathogenic fungi during composting. Furthermore, the variation of the fungal community after inoculation with LD3 was the largest explained by temperature (30.64%). These results implied that LD3 significantly regulated fungal composition and function of food waste composting.


Subject(s)
Composting , Mycobiome , Refuse Disposal , Animals , Carbon , Food , Humans , Nitrates , Nitrites , Nitrogen , Soil
19.
J Autoimmun ; 132: 102896, 2022 10.
Article in English | MEDLINE | ID: mdl-36029717

ABSTRACT

Coronavirus disease (COVID-19) caused by SARS-CoV-2 virus is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production in a small subset of patients. Pre-exiting neutralizing autoantibodies against type I interferons (IFNs) are associated with COVID-19 disease severity. In this case report, plasma levels of IgG against type I interferons (IFNs) were increased specifically among the 103 autoantibodies tested following the second shot of COVID-19 vaccine BNT162b2 compared to pre-vaccination and further increased following the third shot of BNT162b2 in a healthy woman. Unlike COVID-19 mediated autoimmune responses, vaccination in this healthy woman did not induce autoantibodies against autoantigens associated with autoimmune diseases. Importantly, IFN-α-2a-induced STAT1 responses in human PBMCs in vitro were suppressed by adding plasma samples from the study subject post- but not pre-vaccination. After the second dose of vaccine, the study subject exhibited severe dermatitis for about six months and responded to treatments with Betamethasone Dipropionate Ointment and antihistamines for about one month. Immune responses to type I IFN can be double-edged swords in enhancing vaccine efficacy and immune responses to infectious diseases, as well as accelerating chronic disease pathogenesis (e.g., chronic viral infections and autoimmune diseases). This case highlights the BNT162b2-induced neutralizing anti-type I IFN autoantibody production, which may affect immune functions in a small subset of general population and patients with some chronic diseases.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , Interferon Type I , Female , Humans , Autoantibodies , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , RNA, Messenger , SARS-CoV-2 , Vaccination , mRNA Vaccines
20.
Nat Commun ; 13(1): 4823, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973985

ABSTRACT

Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Viral Load , Viremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...